
I/O workload characterization in MPI 
applications

I/O Bloopers



How to find “I/O bloopers”

❏

❏

 



Checking I/O expectations

 

❏

❏
❏

❏
❏

❏

❏

❏



Redundant Read Traffic

❏ Scenario: Applications that read more bytes of data from the file system than 
were present in the file
❏ Even with caching effects, this type of job can cause disruptive I/O 

network traffic
❏ Candidates for aggregation or collective I/O

❏ Example:
❏ Scale: 6,138 processes
❏ Run time: 6.5 hours
❏ Avg. I/O time per process: 

27 minutes

1.3 TiB of file data
500+ TiB read!



Small Writes to Shared Files

■ Scenario: Small writes can contribute to poor performance
– Particularly when writing to shared files
– Candidates for collective I/O or batching/buffering of write operations

■ Example:
– Issued 5.7 billion writes to shared files, each less than 100 bytes in size
– Averaged just over 1 MiB/s per process during shared write phase



Time in Metadata Operations

■ Scenario: Very high percentage of I/O time spent performing 
metadata operations such as open(), close(), stat(), and seek()
– Close() cost can be misleading due to write-behind cache flushing
– Candidates for coalescing files and eliminating extra metadata calls

■ Example:
– Scale: 40,960 processes for 229 seconds, 103 seconds of I/O
– 99% of I/O time in metadata operations
– Generated 200,000+ files with 600,000+ write() and 600,000+ stat() calls



Using the wrong file system

■ Behavior:
– A 40K core job uses MPI-IO to repeatedly write 

a small restart.dat file in /home filesystem
– Many Open/Seek seek calls

■ Problem
– Spent 30% time writing only 600MB output
– Using the wrong File System really hurts
– Many metadata operations will hurt 

performance regardless of FS 
■ Suggestion

– Use/scratch file system (higher bandwidth)
– Reduce amount of metadata calls with 

collective buffering in MPI-IO 
Yushu 
Yao



Checkpointing Too Frequently
■ Behavior

– A 300 node application writes a full checkpoint every hour, with good rate
■ Problem

– Spent 80% time in writing checkpoints
■ Suggestion

– Checkpoint less: Hopper has <1 node failure per day, so a 300 node job is 
expected to have a node failure only every 20 days. Checkpointing less frequently. 

Yushu 
Yao



Performance Debugging: An Analysis I/O 
Example

■ Variable-size analysis data requires 
headers to contain size information

■ Original idea: all processes collectively write 
headers, followed by all processes 
collectively write analysis data

■ Use MPI-IO, collective I/O, all optimizations
■ 4 GB output file (not very large)
■ Why does the I/O take so long 

in this case?

…

Process
es

I/O Time 
(s)

Total Time 
(s)

8,192 8 60
16,384 16 47
32,768 32 57



An Analysis I/O Example (continued)
■ Problem: More than 50% of time spent writing 

output at 32K processes. Cause: Unexpected 
RMW pattern, difficult to see at the application 
code level, was identified from Darshan 
summaries.

■ What we expected to see, read data followed by 
write analysis:

▪ What we saw instead: RMW during the writing shown by overlapping 
red (read) and blue (write), and a very long write as well.



An Analysis I/O Example (continued)

■ Solution: Reorder operations to combine 
writing block headers with block payloads, 
so that "holes" are not written into the file 
during the writing of block headers, to be 
filled when writing block payloads

■ Result: Less than 25% of time spent writing 
output, output time 4X shorter, overall run 
time 1.7X shorter

■ Impact: Enabled parallel Morse-Smale 
computation to scale to 32K processes on 
Rayleigh-Taylor instability data Process

es
I/O Time 
(s)

Total Time 
(s)

8,192 7 60

16,384 6 40

32,768 7 33



 


